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Genome-wide identification and differential
analysis of translational initiation
Peng Zhang 1, Dandan He1, Yi Xu1, Jiakai Hou1, Bih-Fang Pan2, Yunfei Wang 1, Tao Liu 3,

Christel M. Davis4, Erik A. Ehli 4, Lin Tan1, Feng Zhou5, Jian Hu6, Yonghao Yu7, Xi Chen8, Tuan M. Nguyen8,9,

Jeffrey M. Rosen8, David H. Hawke 2, Zhe Ji10,11 & Yiwen Chen1

Translation is principally regulated at the initiation stage. The development of the translation

initiation (TI) sequencing (TI-seq) technique has enabled the global mapping of TIs and

revealed unanticipated complex translational landscapes in metazoans. Despite the wide

adoption of TI-seq, there is no computational tool currently available for analyzing TI-seq

data. To fill this gap, we develop a comprehensive toolkit named Ribo-TISH, which allows for

detecting and quantitatively comparing TIs across conditions from TI-seq data. Ribo-TISH can

also predict novel open reading frames (ORFs) from regular ribosome profiling (rRibo-seq)

data and outperform several established methods in both computational efficiency and

prediction accuracy. Applied to published TI-seq/rRibo-seq data sets, Ribo-TISH uncovers a

novel signature of elevated mitochondrial translation during amino-acid deprivation and

predicts novel ORFs in 5′UTRs, long noncoding RNAs, and introns. These successful appli-

cations demonstrate the power of Ribo-TISH in extracting biological insights from TI-seq/

rRibo-seq data.
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Translation is an essential step of gene expression. It is
tightly controlled1 and is crucial to numerous develop-
mental2 and physiological processes3, 4, such as early

embryogenesis2 and stress responses4, 5, where translational
control of the pre-existing mRNAs can change the final protein
abundance more rapidly than the synthesis of new mRNAs. The
dysregulation of translation is associated with many diseases, such
as anemia6, neurological disorders7, and cancer8.

The development of the ribosome profiling (ribo-seq) techni-
que has enabled the high-resolution measurement of translation
on a genome-wide scale1–3. The basic procedure of ribo-seq is to
perform deep sequencing of the DNA libraries converted from
the ribosome-protected mRNA fragments (RPFs, also termed
ribosome footprints) that are generated by RNase digestion, to
determine the occupancy of translating ribosomes on a given
mRNA. There are several variations of the ribo-seq technique that
use different translation inhibitors4–6. Regular ribo-seq (rRibo-
seq) utilizes cycloheximide (CHX)4, a translation elongation
inhibitor, to freeze all translating ribosomes. Recent studies using
CHX-based rRibo-seq revealed pervasive translation in the
genomic regions that are beyond the annotated protein-coding
regions9–13. These newly discovered translated regions not only
include small open reading frames (smORFs, ≤100 amino acids)
in intragenic regions of protein-coding genes (PCGs), such as
those in the 5′ untranslated region (5′UTR; upstream ORFs,
uORFs) or 3′UTR (downstream ORFs, dORFs) but also include
the smORFs within long noncoding RNAs (lncRNAs)14, 15, which
were not expected to encode any sizable proteins. The human
genome encodes over 15,000 lncRNA genes. Based on rRibo-seq
data, it has been estimated that ~40% of lncRNA genes may
contain translated smORFs12. A few of the smORFs within
lncRNAs have been shown to play essential developmental or
physiological roles in evolutionarily distant species16–19.

Translation is largely regulated at the initiation stage20.
Therefore, elucidating the mechanism and regulation of transla-
tion initiation (TI) is fundamental to our understanding of
translational regulation. The use of the translation inhibitor lac-
timidomycin (LTM)21 or harringtonine (Harr)22, which has a
much stronger effect for capturing initiating ribosomes, allows for
the global mapping of TI sites (TISs) by sequencing (TI-seq).
When LTM is used sequentially with puromycin, the corre-
sponding TI-seq experiment, known as quantitative TI-seq (QTI-
seq), enables a quantitative comparison of TI under different
conditions23. In eukaryotes, the first AUG start codon that the
ribosome encounters is most often selected to initiate translation.
However, many alternative TISs downstream and upstream of the
first AUG have been revealed24, 25. The use of alternative TISs is
an important mechanism for creating protein isoform diversity26–
30 at the translational level, whereby an N-terminal truncated or
extended protein variant can be generated. It was estimated that
20% of the protein N termini identified in mouse and human cells
by mass spectrometry may correspond to alternative TI (aTI)31,
many of which are initiated at near-cognate non-AUG start
codons32. In comparison with the CHX-based rRibo-seq, the TI-
seq/QTI-seq has proven to be a more powerful technique in
aiding the discovery and quantitation of aTI events21, 23, 31, 33,
and is thus a critical tool for discovering novel translational
protein isoforms resulting from aTI (aTI isoforms) and for elu-
cidating the function and mechanism of TI.

Despite the broad applicability of the TI-seq/QTI-seq techni-
que, it remains challenging to distinguish the true signal from
noise and to extract useful information from TI-seq/QTI-seq
data. Computational methods have been developed for the ana-
lysis of rRibo-seq data12, 34–44. However, there is no statistically
principled and computationally efficient tool available for
detecting and quantitatively comparing TIs under different

conditions from TI-seq/QTI-seq data. To fill this gap, we develop
a computational toolkit named ribo-seq data-driven TIS hunter
(Ribo-TISH). Aside from the analysis of TI-seq/QTI-seq data, it
can predict ORFs from rRibo-seq data and outperform several
established methods. When applied to published data sets, Ribo-
TISH reveals an unexpected role of elevated mitochondrial
translation in cellular stress response induced by amino-acid
deprivation and uncovers novel ORFs beyond the annotated
protein-coding regions, demonstrating its utility in extracting
new insights from TI-seq/rRibo-seq data.

Results
An overview of Ribo-TISH. Ribo-TISH was designed as a
comprehensive toolkit for identifying and quantitatively com-
paring genome-wide TIs from TI-seq/QTI-seq data and for pre-
dicting putative ORFs from CHX-based rRibo-seq data. It uses as
input the BAM alignment files generated from TI-seq or rRibo-
seq raw data (Fig. 1). Based on the alignment files, Ribo-TISH
provides a set of metrics/profiles to evaluate data quality (Fig. 1).
These quality control (QC) metrics can identify the potential
problems in the data for experimental optimization and can be
used to filter out data of low quality for downstream analysis.
Furthermore, Ribo-TISH utilizes data-driven methods to identify
potential TISs from TI-seq/QTI-seq data, determine which TISs
show differential initiation rates under different conditions from
QTI-seq data, and predict actively translated ORFs from rRibo-
seq data (Fig. 1).

Quality control of TI-seq and rRibo-seq data. In a TI-seq or
rRibo-seq experiment, the size of RPFs recovered from gel elec-
trophoresis for sequencing are typically around 30 nucleotides
(nts). Ribo-TISH summarizes the distribution of RPF lengths
using the sequenced RPFs that are mapped to the annotated
PCGs and provides a measure of the size selection quality. As

TI-seq RPF
bam file

Regular RPF
bam file

Quality control: frame
phasing & P-site
offset estimation

TIS background
estimation

Quality control: frame
phasing & P-site
offset estimation 

Identify differential
TISs

Predict TISs
Predict translated

ORFs

Fig. 1 A schematic overview of Ribo-TISH. Ribo-TISH starts from quality
control of the aligned sequencing data to identifying and differential
analysis of translation initiations from TI-seq/QTI-seq data, and to
predicting actively translated ORFs from rRibo-seq data
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illustrated in the case of two TI-seq experiments using LTM21

(Fig. 2a) or Harr22 (Fig. 2b), and one rRibo-seq experiment using
CHX45 (Fig. 2c), the RPF length distribution can vary across
different experimental conditions. Based on the RPF length dis-
tribution, Ribo-TISH further provides several QC metrics/profiles
to evaluate the quality of RPFs with different lengths.

The first category of QC profile/metric is the distribution of
RPF counts across three reading frames and the fraction of the
RPF counts in the dominant frame (fd) within the annotated
PCGs at different RPF lengths (Fig. 2). Data of better quality are
expected to have a higher fraction of RPF counts in the actively
translated reading frame than the other two frames, i.e., a larger
fd. The data quality can vary for RPFs with different lengths (e.g.,
Fig. 2c, smaller fd for the RPFs with 31 nts). For rRibo-seq data, to
ensure the inclusion of RPFs with excellent sub-codon frame
phasing or 3-nt periodicity for analysis, Ribo-TISH keeps only the
RPF lengths at which fd is above 0.5 (i.e., the total number of
reads in the dominant reading frame is higher than the total
number of reads in the other two reading frames) for downstream
analysis under the default setting (Methods). Because the
magnitude of 3-nt periodicity can vary between different ribo-
seq data sets and the default threshold of 0.5 may be too stringent
for some data sets, Ribo-TISH allows users to define a customized
threshold of fd for different data sets.

The second category of QC profile/metric is the meta-gene
profile of the RPF count near the annotated TISs and translation
termination sites. A TI-seq or rRibo-seq data set with good
quality is expected to show a sharp increase in RPF count near
annotated TIS sites and a clear reduction near annotated
translation termination sites. The ribosomal P-site is where the
tRNA carrying the growing peptide chain is formed on the
ribosome. The P-site is also the entry point for the first aminoacyl
tRNA, where the canonical initiating Met-tRNAi

Met is base-
paired with the AUG start codon. The P-site is usually internal to
the sequenced RPFs, and Ribo-TISH determines the distance
between the P-site and the 5′ end of the sequenced RPFs (i.e., the
P-site offset) according to the meta-gene profile of the 5′ end of
the RPFs with respect to the annotated TISs (Methods). The P-
site offset can vary for RPFs with different lengths. Taking a Harr-
based TI-seq data set (Fig. 2b) as an example, the P-site offset is
12 nts for the RPFs with length of 30 and 31 nts; whereas, the
offset is 13 nts for the RPFs with the length of 32 nts. After P-site

offset correction, Ribo-TISH calculates the ratio (ft) between the
RPF counts at the annotated TISs and the sum of the RPF counts
near the annotated TISs (from −1 to +1 relative to the annotated
TISs) at different RPF lengths for TI-seq data. Similar to the case
of rRibo-seq data, Ribo-TISH keeps the RPF lengths at which ft is
above a user-definable threshold (default 0.5) for downstream
analysis.

To better quantify the enrichment of the RPF count at the TISs
vs. the whole CDS region, the third category of QC metric/profile
used by Ribo-TISH is the meta-gene profile of the RPF count
across the whole CDS of the annotated PCGs and the TIS
enrichment score after P-site offset correction, which is the ratio
between the RPF count at the annotated TISs and the mean RPF
count across the whole CDS region in the same reading frame.
This metric is designed for QC of TI-seq data. The higher the TIS
enrichment score, the more the initiating ribosomes is stalled and
the better the quality of the TI-seq data. The meta-gene profile
and TIS enrichment score are also provided for RPFs with
different lengths.

The RPF density profile across the CDS region is not only
shaped by translation per se, but can also be influenced by a
variety of technical biases or artifacts that are introduced in
different steps of a ribo-seq experiment, due to the specific RNase
used to digest the unprotected RNAs, the type of antibiotics used
to arrest the ribosomes, and the way in which cells are treated
with selected antibiotics (e.g., the concentration and timing of
antibiotic treatment)25, 46, 47. For example, Gerashchenko et al.48

suggested that the CHX pre-treatment of cells prior to cell lysis
may contribute to the increased RPF density near the start of the
CDS. Thus, the elevation of RPF density observed in these regions
might not be caused by a decrease in translation elongation. The
use of CHX and LTM/Harr may also distort the RPF density near
the TISs due to a pause in the subsequent scanning preinitiation
complex that is caused by the arrest of the downstream
translating ribosomes46, 47. This distortion obscures quantitative
information on the relative initiation rates. Therefore, it is
important to differentiate the effect of translation from that of
technical biases or artifacts on the observed signals in ribo-seq
data. To reveal the sequence determinants of the RPF read density
and help identify potential technical biases or artifacts in ribo-seq
data, O’Connor et al.49 developed the ribo-seq unit step
transformation (RUST) method, a normalization method that
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Fig. 2 Quality control of TI-seq and rRibo-seq data. Quality control with Ribo-TISH for two TI-seq data sets generated using a LTM or b Harr, and c one rRibo-
seq data set generated using CHX. Upper panel: length distribution of RPFs uniquely mapped to annotated protein-coding regions. Lower panel: different quality
profiles/metrics for RPFs uniquely mapped to annotated protein-coding regions. The data corresponding to the first, second and third reading frame are colored
in pink, light green and sky blue, respectively. Each row shows the RPFs with indicated length. Column 1: distribution of RPF 5′ end across three reading frames in
all annotated codons; showing the fraction of RPF counts from dominant reading frame (fd). Column 2: distribution of RPF 5′ end count near annotated
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was based on the Heaviside step function and that performed
better than other methods in the presence of heterogeneous noise.
A major difference in the QC metrics offered by RUST and by
Ribo-TISH is that the main QC metrics used by RUST for
identifying sequencing biases are at the codon level, whereas
those used by Ribo-TISH for detecting low-quality reads are at
the sub-codon level. We set out to determine whether the QC
metrics used by these two methods provide complementary
information on the quality of ribo-seq data. Performing QC with
Ribo-TISH on a rRibo-seq data set50 that was previously shown
by RUST49 to have excellent quality, we found that this data set
showed relatively poor 3-nt periodicity, with fd no more than 0.45
at all RPF lengths and the minimum fd of 0.37 (Supplementary
Fig. 1a). In contrast, we found that the rRibo-seq data generated
by Lee et al.21 showed excellent 3-nt periodicity, with fd no less
than 0.69 at all RPF lengths, but showed an apparent sequencing
bias based on the RUST analysis (Supplementary Fig. 1b).
Therefore, the QC metrics offered by Ribo-TISH and RUST
reveal different aspects of ribo-seq data quality and are
complementary.

Modeling the background distribution of TI-seq data. To
identify bona fide TISs from TI-seq data, we used the RPF counts
at the first base of all CDS in-frame codons (pink bars in CDS
region in Fig. 3a), excluding AUG or near-cognate start codons,
to model the background distribution. As demonstrated in the
examples of GAPDH and UBTD1 (Fig. 3b, c), different transcripts
may vary significantly in their level of translation. Using a single
distribution to fit the background TI-seq data for all transcripts,
regardless of differences in their level of translation, may lead to
false positives for highly translated transcripts and false negatives
for poorly translated ones. To take into account the different
translation levels across transcripts, we divided the transcripts
into different groups based on their TI-seq signal density and
built different background distributions for each group. We fit the
observed background RPF count distribution using four different
probability distributions, including Poisson, zero-inflated Poisson
(ZIP), negative binomial (NB), and zero-inflated NB (ZINB)
distributions. The inclusion of zero-inflated distributions
accounts for the potential excess of zero RPF counts51, 52 in the
non-TISs regions. We performed model selection (Methods)
using either the Akaike information criterion (AIC)53 or Bayesian
information criterion (BIC)54. We found that NB and ZINB
distributions consistently showed better fit for the background
RPF count data across different groups than the other two dis-
tributions, with NB distributions being slightly better than ZINB
distributions (Fig. 3d, Supplementary Table 1). Consistent with
the best fit of the NB distribution to the data, the zero-inflated
components estimated in ZINB distributions are <1%. The
background distributions for transcripts with different TI-seq
signal density were indeed different (Fig. 3e, Methods). Moreover,
we found that the use of a different background distribution by
grouping the transcripts with similar TI-seq signal density
improved the TIS identification based on a receiver-operating
characteristic (ROC) analysis using the positive and negative TIS
sets that were used in a previous study12 and were based on the
consensus CDS (CCDS) in Ensembl human gene annotation
(Fig. 3f, Methods). The improvement plateaued when the number
of groups was over 10 (Fig. 3f).

Genome-wide identification and differential analysis of TIs.
After estimating the background distribution of the TI-seq data,
Ribo-TISH uses the estimated background distribution to assess
the statistical significance of all candidate start codons, including
both AUG and near-cognate start codons. For example, an

analysis of a published LTM-based TI-seq data set21 in human
embryonic kidney cells 293 (HEK293) cells revealed that at the
TUBA1B locus, a uORF may be translated across a reading frame
other than the annotated reading frame (Fig. 4a). Ribo-TISH uses
the same framework for the TI-seq data generated by different
translation inhibitors, including LTM and Harr. To systematically
evaluate the performance difference in identifying bona fide TISs
between LTM- and Harr-based TI-seq data generated in the same
HEK293 cell line21, we performed an ROC analysis using the
same positive and negative TIS sets as were used in the current
study (Methods). We found that the prediction model using
LTM-based data showed better performance than that using
Harr-based data (Supplementary Fig. 2), with a larger area under
the ROC curve (AUC, 0.92 vs. 0.88) and a larger partial AUC
(pAUC, 0.79 vs. 0.71) at the false-positive rate (FPR) of 5%
(Supplementary Table 2). This result suggests that LTM-based
TI-seq may be a better option for genome-wide TIS identification
than Harr-based TI-seq. In addition, we found that the AUG or
near-cognate TISs identified by Ribo-TISH in a LTM-based TI-
seq data set21 in HEK293 cells covered over 80% of those that
were collected by TISdb, a database for aTI in mammalian cells33

(Supplementary Fig. 3a, Fisher’s exact test, p< 2.2 × 10−16). Fur-
thermore, the CUG and GUG are the top two frequently used
non-AUG start codons, and AGG, AAG, and AUA are among the
least frequently used non-AUG codons at the predicted TISs,
suggesting a robust performance of Ribo-TISH in the presence of
potential artifacts in TI-seq data55 (Supplementary Fig. 3b).

For the analysis of QTI-seq data (Fig. 4b) to identify
differential TISs between two biological conditions, Ribo-TISH
uses a stepwise strategy. First, it identifies the TISs under either
condition as described in the current and previous section.
Second, it takes the union of all TISs identified under two
conditions as the candidate TISs for differential analysis. Third, it
uses the RPF counts at the candidate TISs between two conditions
to perform trimmed mean of M values (TMM) normalization56.
The RNA-seq counts of the corresponding genes are also
normalized by TMM. Finally, it uses Fisher’s exact test to assess
whether there is a disproportional change of the RPF counts at
TISs between two conditions compared with the change in the
RNA-seq counts of the corresponding gene (Methods). It also
applies a fold change (FC) cutoff to filter out statistically
significant differential TISs that only show small FC. When only
QTI-seq data are available, Ribo-TISH uses a binomial test to
assess the statistical significance of the difference in the normal-
ized RPF counts at TISs between two conditions. Because the
observed difference in the QTI-seq signal at the TISs is a
composite effect of the difference in TI efficiency and the
difference in RNA abundance, QTI-seq data alone would be
insufficient for distinguishing whether it is the change in TI
efficiency or in RNA abundance that results in the apparent
difference in the QTI-seq signal. Therefore, it is necessary to use
both QTI-seq and RNA-seq data to detect the change in TI
efficiency.

We applied Ribo-TISH to a data set23 that contains both QTI-
seq and RNA-seq data in HEK293 cells to identify those TISs that
show differential TI efficiency between normal and amino-acid
deprivation condition. We identified 1145 non-redundant TISs
(512 AUG TISs and 633 near-cognate TISs) that showed
increased TI efficiency, and 528 non-redundant TISs (382 AUG
TISs and 146 near-cognate TISs) that showed decreased TI
efficiency upon amino-acid deprivation (FDR ≤ 0.05, |log2FC| ≥
log21.5). Among the TISs with upregulated or downregulated TI
efficiency, the dominant classes are the TISs of uORFs and the
annotated ORFs, the combination of which consists 79% of all
upregulated TISs (Supplementary Fig. 4a) and 83% of all
downregulated TISs (Supplementary Fig. 4b). We further
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performed Gene Ontology (GO)-based functional enrichment
analysis57 using DAVID (http://david.ncifcrf.gov/) to identify the
biological processes that are enriched for PCGs with elevated TI
efficiency at annotated TISs upon amino-acid deprivation
(Methods). The top enriched biological processes include many
fundamental processes, such as mRNA splicing, ubiquitin-protein
ligase activity, cell cycle, and translation (Fig. 4c). Interestingly,
mitochondrial translation elongation and termination are among
the top three enriched biological processes (Fig. 4c). The GO-
based enrichment analysis of cellular components also showed
that the PCGs with elevated TI efficiency at annotated TISs, upon
amino-acid deprivation, were enriched in the mitochondrial
compartment (Fig. 4d). Some of the large (Fig. 4e) and small units
(Fig. 4f) of the mitochondrial ribosome showed significantly
increased TI efficiency during amino-acid deprivation. These
results suggest an important role of elevated mitochondrial

translation for mammalian cells to cope with the stress of amino-
acid deprivation. Consistent with our computational finding, a
recent study58 using 35S-methionine pulse-chase labeling of
nascent mitochondrial polypeptides showed that amino-acid
starvation indeed enhanced mitochondrial protein synthesis as
well as increased mitochondrial respiration and membrane
potential.

Ribo-TISH outperformed existing methods in predicting
ORFs. In addition to genome-wide identification and differential
analysis of TIs from TI-seq data, Ribo-TISH allows for predicting
putative ORFs from CHX-based rRibo-seq data. Those actively
translated ORFs are expected to have significantly more RPF
counts from the bona fide reading frame than from the alternative
reading frames, also known as 3-nt periodicity. Ribo-TISH uses a
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frame test based on the non-parametric Wilcoxon rank-sum test
(Methods) to quantitatively assess the difference in read counts at
individual CDS nucleotide positions between the candidate and
alternative reading frames to predict the translated reading frame
(Fig. 5a). To evaluate the performance of Ribo-TISH in predicting
ORFs from rRibo-seq data, we performed an ROC analysis for
Ribo-TISH and four other published methods: RiboTaper40;
ORF-RATER41; riboHMM42; and RibORF12 using a published
rRibo-seq data set21 (Methods). Like Ribo-TISH, RiboTaper,
ORF-RATER, and riboHMM can predict ORFs from rRibo-seq
data without user-specified ORF candidates. RiboTaper was built
upon the multi-taper method developed in the signal-processing
field. RiboTaper and Ribo-TISH use unsupervised methods that
do not rely on prior knowledge of the ORF annotation and allow

for de novo prediction of ORFs from rRibo-seq data. In contrast,
ORF-RATER and riboHMM utilize supervised approaches that
require training on the rRibo-seq data of the annotated ORFs.
ORF-RATER is based on the linear regression method and
riboHMM uses a hidden markov model. Different from the other
methods, RibORF is a candidate-based method that requires the
user to provide a list of candidate ORFs for prediction and it
utilizes a supervised approach built on support vector machines.
In addition to these fundamental algorithmic differences, Ribo-
TISH supports more functionality than the other tools (Supple-
mentary Table 3). In particular, only Ribo-TISH provides the
functionality to assess whether a given RPF read is compatible
with the splice junctions of the annotated isoforms (Supple-
mentary Fig. 5).
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We first compared the performances of Ribo-TISH, RiboTaper,
ORF-RATER, and riboHMM in the prediction of ORFs from
rRibo-seq data without user-specified ORF candidates. In contrast
to Ribo-TISH, which allows for de novo prediction of ORFs with
AUG or near-cognate start codons, RiboTaper does not support
the prediction of ORFs with non-AUG start codons, and ORF-
RATER is too computationally demanding to predict ORFs with
non-AUG start codons (see the comparison of computational
efficiency). To make a fair comparison of the different methods,
we focused on the annotated ORFs with the AUG start codon for
the ROC analysis. In total, we evaluated seven different strategies
(Methods) of ORF predictions, including two implemented in
Ribo-TISH, three in RiboTaper, one in ORF-RATER, and one in
riboHMM. Using the positive and negative ORF sets based on the
CCDS in Ensembl annotation (Methods) and reads per kilobase
of transcript per million mapped reads (RPKM) of 1 as the cutoff
for defining the actively translating genes, we found that the
longest-frame strategy implemented in Ribo-TISH showed the
best predictive performance among all the strategies of ORF
prediction (Fig. 5b), with both AUC and pAUC at 1% FPR being
> 0.96. The strategy with the second best performance was the
best-frame strategy implemented in Ribo-TISH, with an AUC of
0.87 and a pAUC (FPR = 0.01) of 0.74. The best or only strategy
implemented in RiboTaper (max_P_sites) and ORF-RATER
resulted in similar performances to each other, with an AUC of
0.85 vs. 0.83, and a pAUC (FPR = 0.01) of 0.70 vs. 0.64. Because
the ORFs predicted by riboHMM in protein-coding transcripts
were dominantly uORFs (Supplementary Fig. 6a) and short ORFs
(Supplementary Fig. 6b), we only evaluated its performance in
predicting canonical ORFs shorter than 100 amino acids (aa) and
uORFs (see later performance comparison in this section). Better
predictive performance was consistently observed for Ribo-TISH
when a different RPKM threshold of 10 was used to define the
actively translating genes (Supplementary Fig. 7 and Supplemen-
tary Table 4). We further compared the performance of Ribo-
TISH and RibORF in the candidate-based prediction of ORFs.
We found that Ribo-TISH showed superior performance
compared to RibORF (Supplementary Fig. 8a and Supplementary
Table 5), with both AUC and pAUC (FPR = 0.01) > 0.98. In
contrast, although RibORF had a total AUC similar to that of
Ribo-TISH, its pAUC was about 0.87. Better predictive
performance of Ribo-TISH was again consistently observed when
a different threshold was used to define the actively translated
genes (Supplementary Fig. 8b and Supplementary Table 5).

Because the longest-frame strategy implemented in Ribo-TISH
showed better performance than all the other methods for
predicting ORFs with AUG start codons, an important issue is
whether its superior performance is simply due to certain bias
toward longer ORFs. To address this issue, we performed an ROC
analysis using as a positive set the annotated ORFs of the CCDS
in Ensembl that are shorter than 100 aa. For this group of ORFs,
the longest-frame strategy remained the top performer, followed
by the best-frame strategy (Fig. 5c). In addition to their superior
performances in predicting canonical ORFs, the longest-frame
strategy and the best-frame strategy showed better performances
than the other methods in predicting the experimentally validated
uORFs from uORFdb, a uORF database based on literature
curation59 (Fig. 5d). Therefore, it is very unlikely that the better
performance of the longest-frame strategy is simply due to bias
toward longer ORFs. Both the longest-frame strategy and the
best-frame strategy are based on the same frame test. The only
difference between these two strategies is that when there are
multiple in-frame candidate ORFs that share the same stop
codon, the best-frame strategy selects the ORF that shows the best
p-value of the frame test, whereas the longest-frame strategy
selects one with the most upstream TIS as long as the frame test

result is significant. Because the RPF reads are nonuniformly
distributed across the CDS, for in-frame candidate ORFs that
share the same stop codon, the ORF selected by the longest-frame
strategy may differ from the one selected by the best-frame
strategy. The observed better performance of the longest-frame
strategy might reflect the underlying biology of the canonical
translation: among multiple in-frame AUG-initiating ORFs that
share the same stop codon and show good 3-nt periodicity in
rRibo-seq data, it is more likely that the first encountered AUG
will be utilized. However, for predicting ORFs with near-cognate
start codons, the longest-frame strategy may not be a good
strategy because the most upstream candidate near-cognate start
codon may not have superior initiation strength.

One of the challenges in predicting ORFs from rRibo-seq data
is to predict lowly expressed ones. To evaluate the performance of
different methods for predicting lowly expressed ORFs, we
stratified the annotated ORFs based on their expression level
measured from rRibo-seq data and performed an ROC analysis
on ORFs with relatively low expression. We found that the
performance of Ribo-TISH was consistently superior to that of
other methods in predicting lowly expressed ORFs (Fig. 5e, f).
The one-tailed and non-parametric nature of the frame test
makes Ribo-TISH more robust and less sensitive to abnormal
RPF counts at individual nucleotide positions due to background
noise originating from sequencing biases or contaminations of
non-ribosome-bound RNA and regulatory RNA in the ribosomal
complex. This is important especially when the total RPF count
within CDS is relatively low and/or the RPF reads are sparse and
nonuniformly distributed across the whole ORF, because if there
are a small fraction of nucleotide positions with abnormal RPF
counts, the RPF counts from the other positions within the same
CDS would still provide sufficient information to capture the RPF
enrichment in the truly translated frame.

The rRibo-seq data set that we used for the performance
evaluation showed excellent 3-nt periodicity (fd ≥ 0.69) at all RPF
lengths (Supplementary Fig. 1b). As a result, no RPF reads were
filtered out in the analysis. In practice, it is more likely that a
rRibo-seq data set may contain a fraction of RPFs with low
quality. To assess the effect of removing the RPFs with poor 3-nt
periodicity on ORF prediction for different methods, we chose the
ribo-seq data set from Fig. 2c that has a mixture of the RPF reads
of high quality (~71.5%) and those of low quality (~28.5%) based
on the QC metrics provided by Ribo-TISH. We compared the
performance of the different methods on the data with (filtered)
or without (unfiltered) removing the RPFs with the lengths, at
which the fd is < 0.5. Both the longest-frame and the best-frame
strategy from Ribo-TISH showed improved performances on the
filtered data over those on the unfiltered data (Supplementary
Fig. 9a, b). Similarly, all three strategies from RiboTaper
(Supplementary Fig. 9c–e) showed improved performances on
the filtered data compared to those on the unfiltered data. In
contrast, the ORF-RATER showed almost the same performance
on filtered and unfiltered data (Supplementary Fig. 9f). This result
might be because ORF-RATER does not explicitly rely on the 3-nt
periodicity pattern in ribo-seq data for ORF prediction. Although
this feature might make ORF-RATER more robust when only a
fraction of RPFs have poor 3-nt periodicity, a potential issue is
that ORF-RATER may predict ORFs on a data set with overall
poor 3-nt periodicity. Consistently, we found that ORF-RATER
predicted (with default thresholds) ~600 annotated AUG-
initiated ORFs of the CCDS in Ensembl on an RNA-seq data
set60 (GSM1306496) in HEK293 cells, which are all supposed to
be false-positive predictions; whereas, Ribo-TISH predicted zero
and RiboTaper only predicted 11 ORFs of the CCDS in Ensembl
with their default thresholds on the same RNA-seq data.
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Fig. 6 Experimental validations of the computationally predicted smORFs. a rRibo-seq and LTM-based TI-seq RPF count profiles in HEK293 cell line for a
predicted uORF in 5′UTR of EIF5. b FLAG-tagged uORF within the context of the host mRNA was ectopically expressed and translation of the predicted
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Aside from prediction accuracy, we compared the computa-
tional efficiency of the different methods (Methods) using a
published rRibo-seq data set of 25M mapped RPF reads21 and an
RNA-seq data set (only required by RiboTaper) of 34M mapped
reads60 (see Data Sources in Methods). Because RibORF and
riboHMM do not support parallel computing, we only included
Ribo-TISH, RiboTaper, and ORF-RATER for this comparison.
Given that RiboTaper does not support the prediction of ORFs
with non-AUG start codons, the prediction was restricted to
ORFs with AUG start codons. We found that Ribo-TISH was
about 35 times faster than RiboTaper and was about 8 times faster
than ORF-RATER in predicting ORFs with AUG start codons. In
addition, Ribo-TISH used around 1/41 and 1/22 of the memory
that RiboTaper and ORF-RATER required, and used much less
hard disk space for intermediate files (Supplementary Table 6).
The high CPU memory demand of RiboTaper and ORF-RATER
may create challenges for an average user who has no access to
high-performance computing resources and has to use these tools
on a desktop or laptop computer. In addition, Ribo-TISH
outperformed ORF-RATER in computational efficiency for the
prediction of ORFs with NUG (N =A, U, C, and G) start codons
(Supplementary Table 7). ORF-RATER required more than 180
GB of CPU memory and encountered an issue of memory
overflow.

Experimental validation of new smORFs predicted by Ribo-
TISH. As a real application of Ribo-TISH for ORF prediction, we
applied Ribo-TISH to a published data set from the HEK293 cell
line with both LTM-based TI-seq data and rRibo-seq data21. We
focused on predicting novel ORFs that are completely different
from the annotated ORFs (i.e., not the truncated/extended iso-
forms of the known ORFs). By statistically integrating the TIS
prediction from TI-seq data and the ORF prediction from rRibo-
seq data (Methods), we predicted 5032 novel ORFs, including
4268 (85%) ORFs from 5′UTRs (uORFs), 42 (1%) ORFs from 3′
UTRs (dORFs), 176 (3%) ORFs that are internal to and out-of-
frame with the known ORFs (internal), and 546 (11%) ORFs
from lncRNAs (Supplementary Fig. 10a). Interestingly, we found
that the start codon usage in uORFs is distinct from that for the
other classes of ORFs (Supplementary Fig. 10b). This finding was
consistent with previous studies21, 22. Only about 30% of the
predicted uORFs initiate at the AUG start codon, whereas more
than 50% of the other classes of ORFs initiate at the AUG start
codon. The most frequent near-cognate start codon in uORFs,
dORFs, and the ORFs from lncRNAs is CUG. In contrast, ACG is
the most frequent near-cognate start codon in internal ORFs. In
addition to the difference in the start codon usage, the predicted
ORFs from different classes exhibit distinct length distributions
(Supplementary Fig. 10c). The uORFs and internal ORFs have a
median length around 30 aa, whereas the dORFs and the ORFs
from lncRNAs have a median length of around or over 50 aa.

To experimentally validate the predicted novel ORFs, we
focused on smORFs with lengths between 50 and 100 aa, and with
the canonical AUG start codon, which consist of 248 uORFs, 99
lncRNA-encoded, and 3 intron-encoded ORFs (Supplementary
Table 8). For smORFs encoded by lncRNAs, we required both the
smORFs and the corresponding lncRNAs to be conserved
between humans and other primates61–63 (Methods and Supple-
mentary Table 8). We selected one top smORF candidate in each
category from 5′UTRs, lncRNAs, and the introns of PCGs for
validation (Supplementary Table 9). We also generated a rRibo-
seq (Methods) data set in HEK293 cells (GSE94460) to confirm
that the top smORF candidates were likely to be translated based
on this independent data set. We tested whether the predicted
smORF-encoding transcripts were competent to produce a

polypeptide by first ectopically expressing the corresponding
host mRNAs or lncRNAs that encode the smORFs with a 3′ end
addition of FLAG epitope tags and then detecting the translated
polypeptide by western blot analysis with an anti-FLAG antibody
(Methods, Supplementary Table 10). We first confirmed the
polypeptide produced by the top uORF candidate from the 5′
UTR of EIF5 (Fig. 6a, b). For the smORF encoded by lncRNAs,
we chose the second best candidate smORF from the lncRNA
DANCR for experimental validation, because the top candidate
lncRNA GAS5 is known to undergo nonsense-mediated decay
and encode smORFs64, 65. Consistent with our prediction
(Fig. 6c), a polypeptide encoded by DANCR was detected with
the expected size from the western blot analysis (Fig. 6d). For the
top intronic smORF candidate within an intron of BLOC1S3
(Fig. 6e), the detected size (~15 kDa) of the polypeptide (Fig. 6f)
was different from the computational prediction (~12 kDa). To
confirm the true identity of this polypeptide, we performed
immunoprecipitation coupled with mass spectrometry analysis.
The detected sequences of the polypeptide indeed corresponded
to the predicted smORF sequences (Supplementary Table 11,
Supplementary Figs. 11–15), but did not correspond to any other
protein in the human proteome. Interestingly, the smORF-
encoding intron of BLOC1S3 is in the 5′UTR region. Introns in 5′
UTR can play an important regulatory role in the nuclear export
of the mRNAs through their nucleotide sequences66, 67. Our
finding of the smORF-encoding intron in the 5′UTR region
suggests that the 5′UTR introns might influence gene expression
through a coding-dependent mechanism, which awaits further
studies.

Discussion
Translational control is critical for gene regulation during many
developmental, physiological, and pathophysiological processes,
and occurs principally at the initiation stage. Recent studies using
TI-seq/QTI-seq and/or rRibo-seq techniques have revealed a
notably complex translational landscape in metazoans, with
hundreds of novel smORFs outside the known PCGs and with
many mouse/human genes that have aTI isoforms. Evidence is
mounting that some of these smORFs/aTI isoforms can serve
important biological functions. Despite the broad applicability
and wide adoption of TI-seq/QTI-seq and rRibo-seq techniques,
the lack of computational tools that facilitate efficiently and
comprehensively decoding the translational landscape from dif-
ferent types of ribo-seq experiments presents a major challenge to
unleashing the full power of ribo-seq data.

Ribo-TISH is a comprehensive informatic solution to this
challenge. It enables both low-level and high-level analysis of TI-
seq/QTI-seq data, starting from QC of the aligned sequencing
data to identifying and quantitatively comparing genome-wide
TIs under different conditions. In addition, it allows for pre-
dicting actively translated ORFs from CHX-based rRibo-seq data.
Ribo-TISH outperformed several other published methods for
ORF prediction from rRbio-seq data in both computational
efficiency and prediction accuracy. In particular, Ribo-TISH
improved the prediction accuracy for genes with low expression
and enabled computationally efficient de novo prediction of ORFs
with near-cognate start codons.

Many technical biases or artifacts originating from different
experimental sources have been observed in ribo-seq data46, 47.
Therefore, the QC of ribo-seq data is important for identifying
the potential biases that may affect the biological conclusions that
are drawn. Using the appropriate QC can also improve experi-
mental design, protocol selection, and downstream data analyses.
We demonstrated that removing the RPFs with low quality from
rRibo-seq data based on the QC metrics provided by Ribo-TISH
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improved the performance in ORF prediction for most compu-
tational strategies that we evaluated. Moreover, the QC metrics
provided by Ribo-TISH offer information about the data that
differs from that provided by an alternative method, RUST. In
practice, it is advisable to use several methods for QC of ribo-seq
data to have a comprehensive view of the data quality. Although
the LTM- or Harr-based TI-seq experiments are powerful for
mapping the TISs, the signals at the TISs from these experiments
do not necessarily reflect the true TI rates and cannot be used for
quantitative comparisons between conditions23, 46, 47. Therefore,
a QTI-seq23 experiment is necessary for any study that aims to
identify differential TIs between conditions. Ribo-TISH provides
both the functionality of analyzing QIT-seq data alone to identify
differential TISs with apparent change in the QTI-seq signal, and
the functionality of jointly analyzing QTI-seq and RNA-seq data
to identify differential TISs due to the change in TI efficiency
between conditions. For the former functionality, Ribo-TISH can
analyze the data with a single replicate on its own, as well as
analyze the data from replicates with the aid of other tools such as
edgeR68 and DESeq269. For the latter functionality, Ribo-TISH
currently can only analyze the data with a single replicate. It is
important to further develop the method to enable a joint analysis
of QIT-seq and RNA-seq data from replicates.

Recent studies70, 71 have shown that different RNA transcript
isoforms can be subject to differential translational control that
expands a large dynamic range, suggesting the importance of
characterizing transcript-isoform-specific translational regulation.
Ribo-TISH can distinguish whether RPF reads are compatible
with the splicing patterns of the given transcript isoforms,
whereas this feature was not supported by any of the other tools
(Supplementary Table 3 and Supplementary Fig. 5). In its current
implementation, Ribo-TISH treats the transcript isoforms from
the same gene independently without jointly modeling the RPF
sequencing reads across isoforms. Therefore, it does not quantify
the TI at the level of the individual isoform. Similar to the other
published methods, Ribo-TISH does not provide functionality for
inferring isoform-level ribosome occupancy to predict ORF
translation. In the future, it will be important to develop statistical
models that enable joint analysis of the RPF reads across different
transcript isoforms of the same gene to infer the isoform-specific
TI or ORF translation, as was done for isoform quantification
from RNA-seq data in previous studies72–77.

When applied to published TI-seq/QTI-seq and rRibo-seq data
sets, Ribo-TISH uncovered a novel signature of elevated mito-
chondrial translation during amino-acid deprivation in HEK293
cells, suggesting that the elevated mitochondrial translation may
be an important and integrated component of the amino-acid
deprivation-induced stress response process. Importantly, this
computational finding was experimentally validated by an inde-
pendent study, where the authors showed that amino-acid star-
vation enhanced mitochondrial protein synthesis by using 35S-
methionine pulse-chase labeling of nascent mitochondrial poly-
peptides58. Ribo-TISH also predicted many novel ORFs, includ-
ing one encoded by the lncRNA DANCR and one encoded by the
5′UTR of EIF5, both of which were experientially confirmed.
Interestingly, it revealed a novel ORF within a previously anno-
tated intron in the 5′UTR of the PCG BLOC1S3, which was
experimentally validated. Approximately 35% of human 5′UTRs
are annotated as harboring introns66. Genes with regulatory
functions are enriched for introns in the 5′UTRs, whereras the 5′
UTR introns are significantly depleted in genes that encode
proteins targeted to the mitochondria or edoplasmic reticulum78.
Introns in 5′UTRs can influence gene expression through dif-
ferent mechanisms (e.g., dictating the mechanisms of mRNA
export) from those used by introns in CDS66, 67. Our finding of
the first smORF-encoding intron in the 5′UTR region suggests

that some of these previously annotated 5′UTR introns might
influence gene expression through a coding-dependent
mechanism.

In summary, Ribo-TISH is a computationally efficient toolkit
for decoding the translational landscape from both TI-seq/QTI-
seq and rRibo-seq data. It promises to benefit the broad research
community in studies of the function and mechanisms of trans-
lational regulation under different contexts.

Methods
Ribosome profiling and library preparation. Sample preparation for ribosome
profiling was conducted according to the manufacturer’s specifications for the
TruSeq Ribo Profile (Mammalian) Library Prep Kit (Illumina). Briefly, HEK293
cells were treated with CHX (Sigma-Aldrich, final concentration 0.1 mg/ml) for 1
min. In-dish cell lysis was performed using mammalian lysis buffer (including
CHX at a concentration of 0.1 mg/ml). Then 600 μl of lysate were taken and 15 μl
of RNase I (100 U/μl, Thermo Fisher Scientific) were added and the mixtures were
incubated for 45 min at room temperature, followed by adding 15 μl SUPERaseIn
RNase inhibitor (Ambion, Thermo Fisher Scientific) to stop the reaction. Ribosome
recovery was performed by illustra MicroSpin S-400 HR Columns (GE Healthcare)
and the RPFs were purified by RNA Clean & Concentrator (Zymo Research).
Ribosomal RNAs were depleted using Ribo-Zero Magnetic Gold Kit (Human/
Mouse/Rat, Illumina). RPFs without ribosomal RNA were run on a 15% urea
denaturing-PAGE gel, and the gel slices corresponding to 28–30 nts were excised.
The RPF RNAs were eluted and precipitated followed by library construction
according to the manufacturer’s protocol.

Cloning. The fragments that concatenate the 5′-upstream sequences, the CDS of
putative smORFs (without stop codon), and a 3′-3xFLAG-epitope along with a stop
codon were generated by synthesizing gBlocks gene fragments (IDT) followed by
polymerase chain reaction. The products were cloned into the multiple cloning
sites XbaI and BamHI of pcDNA3.1(-) under a cytomegalovirus promoter. The
primer sequences and the sequences of the synthesized gBlock are listed in Sup-
plementary Table 10.

Cell culture and transient transfection. HEK293 cells (gifts from Dr. George A.
Calin’s lab) were grown in high-glucose Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal bovine serum, penicillin, and streptomycin at 37 °C
under an atmosphere of 5% CO2 and plated in six-well plates 24 h before trans-
fection. SmORF-3xFLAG constructs and a mock negative control with start codon-
removed 3xFLAG sequence in the same plasmid backbone were transfected into
the cells with Lipofectamine 3000 Reagent (Invitrogen, Thermo Fisher Scientific).
The identity of HEK293 cells was authenticated by short tandem repeat finger-
printing at the Characterized Cell Line Core Facility of UT MD Anderson Cancer
Center. Mycoplasma contamination of HEK293 cells was tested using MycoAlert
PLUS Mycoplasma Detection Kit (Lonza, LT07-703) and the result was negative.

Western blot. Forty-eight hours post transfection, the HEK293 cells were lysed
using CelLytic M lysis reagent (Sigma-Aldrich). Clarified cell lysates (30 μl) were
mixed with 2× Tricine SDS Sample Buffer (Novex, Thermo Fisher Scientific) and
run on 10–20% Tricine Protein Gels (Novex, Thermo Fisher Scientific) in Tricine
SDS Running Buffer (Novex, Thermo Fisher Scientific) at 125 V for 90 min. Pro-
teins were transferred to polyvinylidene fluoride membrane (0.2 μm, Bio-Rad) at
100 mA for 2 h in Tris-Gly Transfer Buffer (Novex, Thermo Fisher Scientific)
supplement with methanol (Sigma-Aldrich). Immunoblots were incubated with
primary monoclonal anti-FLAG M2 antibody (1:1000, F1804-200UG, Sigma-
Aldrich) and anti-β-actin (1:10,000, AM4302, Ambion, Thermo Fisher Scientific)
overnight at 4 °C and then secondary anti-mouse IgG and horseradish peroxidase-
linked antibody (1:5000, Cell Signaling) at room temperature for 2 h. Immunoblots
were developed with Western ECL (Clarity, Bio-Rad). Full, uncropped versions of
all blot images are provided in Supplementary Fig. 16.

Immunoprecipitation and mass spectrometry sample preparation. HEK293
cells in 10 cm2 plates with 80% confluency were transfected with 10 µg smORF-
3xFLAG constructs and 10 µg mock vector control 48 h prior to immunoprecipi-
tation. Transfected cells were harvested in CelLytic M lysis buffer coupled with
protease inhibitor cocktail (Sigma-Aldrich). Extracts were incubated at 4 °C over-
night with 50 µl anti-FLAG M2 affinity gel (Sigma-Aldrich). The resulting immune
complexes were washed, and the FLAG-tagged polypeptides were eluted by a
competition with 3xFLAG peptide (Sigma-Aldrich) in wash buffer followed by
western blot analysis with monoclonal anti-FLAG M2 antibody (1:1000, F1804-
200UG, Sigma-Aldrich). After immunoprecipitation, proteins were separated on a
pre-cast Tricine SDS-PAGE gel (Bio-Rad) and stained with GelCode Blue Stain
reagent (Thermo Fisher Scientific). Gel slices were excised and digested with
trypsin (Promega) overnight at 37 °C. Digested peptides were analyzed by liquid
chromatography-tandem mass spectrometry (LC-MS/MS) using an Ultimate
3000 system (Dionex) coupled to an Orbitrap Elite mass spectrometer (Thermo
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Fisher Scientific). Data were interrogated with smORF sequence by the Mascot
Software (version 2.5.1) through Proteome Discoverer (Thermo Fisher Scientific)

RPF reads alignment. The RPF reads were trimmed and the low-quality reads
were filtered by Sickle (http://github.com/ucdavis-bioinformatics/sickle). The RPF
reads after filtering were mapped to human rRNA sequences using bowtie and
allowing for two mismatches. The reads that were not mapped to human rRNA
sequences were then mapped to human genome (GRCh38) with Ensembl gene
annotation release 83 using STAR79. The alignment was performed with the fol-
lowing parameters: “–outSAMattributes All–outFilterMismatchNmax
2–alignEndsType EndToEnd–outFilterIntronMotifs
RemoveNoncanonicalUnannotated–alignIntronMax 20000–outMultimapperOrder
Random–outSAMmultNmax 1”.

Compatibility of RPF reads with transcript structure. For an RPF read that
overlaps with a transcript, the exon-intron structure of the transcript within their
overlapping genomic region was extracted and evaluated. Only the RPF read that is
consistent with the exon-intron structure of a transcript will be assigned to this
transcript (see the detailed examples in Supplementary Fig. 5).

Quality control of ribo-seq data. Quality control was performed using all the
uniquely mapped RPF reads in the annotated ORFs of the CCDS in Ensembl
human gene annotation version 83. The longest ORF was used for each gene. RPFs
were grouped by their lengths and whether the base of their 5′ end matches the
genome. Each aligned RPF read was represented by its 5′ end before estimation of
the P-site offset.

The RPF count between the 15 bp upstream of the first base of the start codon
and the 12 bp upstream of the first base of the stop codon were used to calculate the
RPF count distributions across three reading frames. The fraction of the RPF
counts in the dominant frame (fd) was calculated as the ratio between the
maximum RPF count among all three reading frames and the sum of the RPF
counts from all reading frames. For rRibo-seq data, if the fd of the RPF reads of a
given length was lower than a user-definable threshold (default 0.5), this group of
RPF reads was considered to be of low quality and was discarded in downstream
analysis.

The metagene RPF count profile near the start/stop codon was constructed by
summing the RPF count between −40 and +20 bp of the first base of the start/stop
codon across all annotated PCGs. The P-site offset was estimated based on the
distribution of the 5′ end of the metagene RPF counts near the annotated start
codons. All estimated P-site offsets were saved in a python script file. RPFs were
represented by their P-site positions in downstream analysis. After P-site offset
correction, the ratio (ft) between the RPF counts at the annotated TISs and the sum
of the RPF counts near the annotated TISs (from −1 to +1 relative to the annotated
TISs) was calculated at different RPF lengths for TI-seq data. Similar to the case of
rRibo-seq data, Ribo-TISH keeps only the RPF lengths, at which ft is above a user-
definable threshold (default 0.5) for downstream analysis. The CDS metagene
profile was constructed using the RPF counts in the region between 15 bp upstream
of the first base of the start codon and 12 bp upstream of the first base of the stop
codon. The CDS metagene profile was constructed for three reading frames,
respectively. For each frame, the CDS region was divided into 20 bins and the
average RPF count across all annotated PCGs was calculated for each bin. For TI-
seq data, a TIS enrichment score was also calculated as the RPF count at TIS
divided by the mean RPF count across the whole CDS in the corresponding reading
frame.

Data sources. For the demonstration of how Ribo-TISH performs QC of TI-seq
and rRibo-seq data, an LTM-based TI-seq data (SRR618772 and SRR618773) in
human HEK293 cells21, a Harr-based TI-seq data (SRR315607) in mouse
embryonic cells22, and an rRibo-seq data (SRR970588) in human HeLa cells were
used45. For the other analyses, the LTM-based TI-seq data (SRR618772 and
SRR618773), the rRibo-seq data (SRR618770 and SRR618771), and the Harr-based
TI-seq data (SRR964946) from a published data set21 in human HEK293 cells were
used. The QTI-seq data under normal condition (SRR1630828) and amino-acid
deprivation (SRR1630828) and the corresponding RNA-seq data (SRR1630838 and
SRR1630840) were obtained from another data set23. RNA-seq data60

(GSM1306496) was used as the input for RiboTaper. Ensembl human gene
annotation version 83 was used as transcript annotation.

Model selection for TI-seq background distribution. Four discrete probability
distributions, including Poisson, ZIP, NB, and ZINB, were tested for modeling the
background distribution of TI-seq read counts. The transcripts were divided into
10 groups based on the TIS read density of the transcript and each group has the
same number of total TI-seq read counts. The parameters of the four models were
determined by fitting the observed distribution of the RPF counts at the first base of
all the codons that are in frame with the known ORFs, excluding AUG or potential
near-cognate start codons. Model selection was performed using AIC53 and BIC54.
The distribution fitting and AIC/BIC calculations were performed using the
function “fitdist” implemented in the R package fitdistrplus.

TIS and ORF prediction. NB models were used to model the background dis-
tribution of TI-seq/QTI-seq data for testing TI-seq/QTI-seq signal enrichment at
the candidate TISs. The parameters of the background NB model were estimated
by fitting the observed distribution of the RPF count at the first base of all the
codons that are in frame with the known ORFs, excluding AUG or potential near-
cognate start codons. For Harr-based TI-seq data, the first 15 codons starting from
TIS were excluded. Ribo-TISH divided the transcripts into 10 groups by default
based on the TIS read density of the transcript, and each group has the same
number of total TI-seq read counts. After NB parameters were estimated for these
expression groups, each transcript was assigned to one of the groups, and one-
tailed NB test was performed to assess the statistical significance of all candidate
start codons. For predicting actively translated ORFs from rRibo-seq data, each
nucleotide position in the CDS was divided into the positions from the candidate
reading frame and those from the alternative reading frames. The number of RPF
counts at each position from the candidate reading frame makes up the first group
and that at each position from the alternative reading frames makes up the second
group. A frame test was performed, by using a one-tailed Wilcoxon rank-sum test,
to assess whether the RPF counts from the first group are generally higher than
those from the second group.

Differential analysis of TISs. After the TISs under the conditions of interest were
identified, a TMM56 normalization factor was calculated based on the RPF counts
at the union of significant TISs under these conditions. TMM normalization is used
by edgeR68 for the normalization of RNA-seq data. Briefly,M values (log ratio) and
A values (mean average) were calculated for these TISs. The TISs with the highest
and lowest 30% of M values were trimmed, and TISs with highest and lowest 5% of
A values were also trimmed. The weighted mean of the remaining M values was
calculated and used as the normalization factor. The binomial test was used to
assess the statistical significance of the difference in normalized RPF counts
between the TISs of the two conditions when only a single replicate of QTI-seq data
are available and no RNA-seq is available. When QTI-seq data have replications,
Ribo-TISH exports TIS count table and provides R scripts to call differential TISs
using edgeR68 or DESeq269. To identify TISs with up or downregulated TI effi-
ciency by jointly analyzing QTI-seq and RNA-seq data, a Fisher’s exact test was
performed on the normalized TIS and RNA-seq counts to assess whether there is a
disproportional change of the RPF counts at TISs between two conditions com-
pared with the change in the RNA-seq counts of the corresponding gene. A FC
cutoff of 1.5 was further applied to filter out TISs that only show a small FC.

Positive and negative sets for performance evaluation. For a general evaluation
of the performance of different methods, the annotated TISs and ORFs of the
CCDS in Ensembl human gene annotation version 83 were used as the positive set.
The CCDS protein set is a core set of protein-coding regions in human and mouse,
which are consistently annotated across databases and of high quality. The CCDS is
a collaborative effort across several annotation databases (http://www.ncbi.nlm.nih.
gov/projects/CCDS/CcdsBrowse.cgi). The out-of-frame ORFs inside the CCDS and
from the predicted ORFs within short noncoding transcripts were used as the
negative set. For the comparison of performance in predicting short ORFs or
uORFs, the CCDS ORFs that are shorter than 100 aa or experimentally validated
uORFs from uORFdb were used as the positive set, respectively.

Performance of different methods in predicting ORFs. There can be multiple
candidate in-frame ORFs that share the same stop codon in de novo prediction of
ORFs from rRibo-seq data. The ability of finding the correct TIS for each annotated
ORF using rRibo-seq data is part of our evaluation. Ribo-TISH provides two
strategies named “longest frame” and “best frame” for de novo prediction of ORFs
based on rRibo-seq data. Both strategies use the one-tailed Wilcoxon sum test to
quantitatively assess the 3-nt periodicity. They differ when there are multiple
candidate in-frame ORFs that share the same stop codon: the best-frame strategy
selects the ORF that shows the best p-value of the frame test, whereas the longest-
frame strategy selects the one with the most upstream TIS as long as the frame test
result is significant. RiboTaper provides three strategies including best_periodicity,
max_P_sites, and more_tapers, and the details of which can be found in ref. 40.
ORF-RATER and riboHMM only provide one strategy for ORF prediction. ORF-
RATER is based on the linear regression method and riboHMM uses a hidden
Markov model. RiboHMM only predicts one ORF for each transcript. For the
comparison of performance difference in candidate-based prediction between
Ribo-TISH and RibORF, the TISs and ORFs in the positive and negative sets were
used as the candidates to perform ROC analysis. For a fair comparison, the
requirement of RPFs compatible with transcript structure was turned off in Ribo-
TISH. The comparison of the computational efficiency of different methods were
performed using 4 processors on one node from the Nautilus High-Performance
Computing cluster at UT MD Anderson Cancer Center, which is equipped with
Intel Xeon E5-2680 processors running at 2.5 GHz and is running the Red Hat
Linux 4.4.7.

Functional enrichment analysis. The GO enrichment analysis was performed in
DAVID (http://david.ncifcrf.gov). The genes with significantly increased TI
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efficiency under amino-acid deprivation condition were taken as input gene set,
and the genes with RPKM ≥ 1 were used as the background.

ORF prediction by integrating TI-seq and rRibo-seq data. Both AUG and near-
cognate start codons were allowed in the prediction of novel ORFs. The p-value of
the one-tailed NB test (Tp) on the TI-seq data and the p-value of the frame test (rp)
on the rRibo-seq data were combined using Fisher’s method. Multiple testing
corrections were performed using the Benjamini–Hochberg Procedure80. The
candidate novel ORFs were selected by the following criterions: q-value ≤ 0.05,
Tp ≤ 0.01, and rp ≤ 0.01. The predicted ORFs that had any overlap with the
annotated ones in the same translation frame or were from pseudogenes were
filtered out in downstream analysis. To predict the ORFs encoded by the annotated
introns of PCGs, we extract consensus intron regions from Ensembl gene anno-
tation. The candidate lncRNA-encoded smORFs that were selected for experi-
mental validation were required to meet the following two criterions. First, the
selected smORF-encoding human lncRNAs should have a homolog in at least one
non-human primate species, based on the published assignment of lncRNA
homologs61–63. Second, the smORFs from the homologous lncRNAs should share
statistically significant similarity in amino-acid sequence (E-value <1 × 10−10),
based on the BLAST analysis.

Software and code availability. The webpage of Ribo-TISH toolkit can be found
at the website of Department of Bioinformatics and Computational Biology at UT
MD Anderson Cancer Center (http://bioinformatics.mdanderson.org/main/Ribo-
TISH). Ribo-TISH package was written in Python and can be downloaded from
Github (http://github.com/zhpn1024/ribotish).

Data availability. The ribo-seq data were deposited to GEO (GSE94460).

Received: 18 March 2017 Accepted: 31 October 2017

References
1. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in

eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).
2. Curtis, D., Lehmann, R. & Zamore, P. D. Translational regulation in

development. Cell 81, 171–178 (1995).
3. Buffington, S. A., Huang, W. & Costa-Mattioli, M. Translational control in

synaptic plasticity and cognitive dysfunction. Annu. Rev. Neurosci. 37, 17–38
(2014).

4. Spriggs, K. A., Bushell, M. & Willis, A. E. Translational regulation of gene
expression during conditions of cell stress. Mol. Cell 40, 228–237 (2010).

5. Starck, S. R. et al. Translation from the 5′ untranslated region shapes the
integrated stress response. Science 351, aad3867 (2016).

6. Flygare, J. & Karlsson, S. Diamond-Blackfan anemia: erythropoiesis lost in
translation. Blood 109, 3152–3154 (2007).

7. Scheper, G. C., van der Knaap, M. S. & Proud, C. G. Translation matters:
protein synthesis defects in inherited disease. Nat. Rev. Genet. 8, 711–723
(2007).

8. Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer.
Nat. Rev. Cancer 10, 254–266 (2010).

9. Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of
annotated protein-coding genes. Cell Rep. 8, 1365–1379 (2014).

10. Bazzini, A. A. et al. Identification of small ORFs in vertebrates using ribosome
footprinting and evolutionary conservation. EMBO J. 33, 981–993 (2014).

11. Aspden, J. L. et al Extensive translation of small open reading frames revealed
by poly-ribo-seq. eLife 3, e03528 (2014).

12. Ji, Z., Song, R., Regev, A. & Struhl, K. Many lncRNAs, 5′UTRs, and
pseudogenes are translated and some are likely to express functional proteins.
eLife 4, e08890 (2015).

13. Chew, G. L. et al. Ribosome profiling reveals resemblance between long non-
coding RNAs and 5′ leaders of coding RNAs. Development 140, 2828–2834
(2013).

14. Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu.
Rev. Biochem. 81, 145–166 (2012).

15. Slavoff, S. A. et al. Peptidomic discovery of short open reading frame-encoded
peptides in human cells. Nat. Chem. Biol. 9, 59–64 (2013).

16. Magny, E. G. et al. Conserved regulation of cardiac calcium uptake by peptides
encoded in small open reading frames. Science 341, 1116–1120 (2013).

17. Nelson, B. R. et al. A peptide encoded by a transcript annotated as long
noncoding RNA enhances SERCA activity in muscle. Science 351, 271–275
(2016).

18. Pauli, A. et al. Toddler: an embryonic signal that promotes cell movement via
Apelin receptors. Science 343, 1248636 (2014).

19. Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding
RNA regulates muscle performance. Cell. 160, 595–606 (2015).

20. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic
translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol.
11, 113–127 (2010).

21. Lee, S. et al. Global mapping of translation initiation sites in mammalian cells at
single-nucleotide resolution. Proc. Natl Acad. Sci. USA 109, E2424–E2432
(2012).

22. Ingolia, N. T., Lareau, L. F. & Weissman, J. S. Ribosome profiling of mouse
embryonic stem cells reveals the complexity and dynamics of mammalian
proteomes. Cell. 147, 789–802 (2011).

23. Gao, X. et al. Quantitative profiling of initiating ribosomes in vivo. Nat.
Methods 12, 147–153 (2015).

24. Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where
and how of protein synthesis. Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).

25. Ingolia, N. T. Ribosome footprint profiling of translation throughout the
genome. Cell. 165, 22–33 (2016).

26. Kochetov, A. V., Sarai, A., Rogozin, I. B., Shumny, V. K. & Kolchanov, N. A.
The role of alternative translation start sites in the generation of human protein
diversity. Mol. Genet. Genomics 273, 491–496 (2005).

27. Oyama, M. et al. Diversity of translation start sites may define increased
complexity of the human short ORFeome. Mol. Cell. Proteomics 6, 1000–1006
(2007).

28. Fritsch, C. et al. Genome-wide search for novel human uORFs and N-terminal
protein extensions using ribosomal footprinting. Genome Res. 22, 2208–2218
(2012).

29. Michel, A. M. et al. Observation of dually decoded regions of the human
genome using ribosome profiling data. Genome Res. 22, 2219–2229 (2012).

30. Xu, H. et al. Length of the ORF, position of the first AUG and the Kozak motif
are important factors in potential dual-coding transcripts. Cell Res. 20, 445–457
(2010).

31. Van Damme, P., Gawron, D., Van Criekinge, W. & Menschaert, G. N-terminal
proteomics and ribosome profiling provide a comprehensive view of the
alternative translation initiation landscape in mice and men. Mol. Cell.
Proteomics 13, 1245–1261 (2014).

32. Peabody, D. S. Translation Initiation at non-Aug triplets in mammalian-cells. J.
Biol. Chem. 264, 5031–5035 (1989).

33. Wan, J. & Qian, S. B. TISdb: a database for alternative translation initiation in
mammalian cells. Nucleic Acids Res. 42, D845–D850 (2014).

34. Legendre, R., Baudin-Baillieu, A., Hatin, I. & Namy, O. RiboTools: a Galaxy
toolbox for qualitative ribosome profiling analysis. Bioinformatics 31,
2586–2588 (2015).

35. Olshen, A. B. et al. Assessing gene-level translational control from ribosome
profiling. Bioinformatics 29, 2995–3002 (2013).

36. Zhong, Y. et al. RiboDiff: detecting changes of mRNA translation efficiency
from ribosome footprints. Bioinformatics 33, 139–141 (2017).

37. Larsson, O., Sonenberg, N. & Nadon, R. anota: Analysis of differential
translation in genome-wide studies. Bioinformatics 27, 1440–1441 (2011).

38. Larsson, O., Sonenberg, N. & Nadon, R. Identification of differential translation
in genome wide studies. Proc. Natl Acad. Sci. USA 107, 21487–21492 (2010).

39. Xiao, Z., Zou, Q., Liu, Y. & Yang, X. Genome-wide assessment of differential
translations with ribosome profiling data. Nat. Commun. 7, 11194 (2016).

40. Calviello, L. et al. Detecting actively translated open reading frames in ribosome
profiling data. Nat. Methods 13, 165–170 (2016).

41. Fields, A. P. et al. A regression-based analysis of ribosome-profiling data reveals
a conserved complexity to mammalian translation. Mol. Cell. 60, 816–827
(2015).

42. Raj, A. et al. Thousands of novel translated open reading frames in humans
inferred by ribosome footprint profiling. eLife 5, e13328 (2016).

43. Crappe, J. et al. PROTEOFORMER: deep proteome coverage through ribosome
profiling and MS integration. Nucleic Acids Res. 43, e29 (2015).

44. Chung, B. Y. et al. The use of duplex-specific nuclease in ribosome profiling and
a user-friendly software package for Ribo-seq data analysis. RNA 21, 1731–1745
(2015).

45. Stumpf, C. R., Moreno, M. V., Olshen, A. B., Taylor, B. S. & Ruggero, D. The
translational landscape of the mammalian cell cycle. Mol. Cell. 52, 574–582
(2013).

46. Andreev, D. E. et al. Insights into the mechanisms of eukaryotic translation
gained with ribosome profiling. Nucleic Acids Res. 45, 513–526 (2017).

47. Jackson, R. & Standart, N. The awesome power of ribosome profiling. RNA 21,
652–654 (2015).

48. Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause
abnormalities in ribosome profiling experiments. Nucleic Acids Res. 42, e134
(2014).

49. O’Connor, P. B., Andreev, D. E. & Baranov, P. V. Comparative survey of the
relative impact of mRNA features on local ribosome profiling read density. Nat.
Commun. 7, 12915 (2016).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01981-8 ARTICLE

NATURE COMMUNICATIONS |8:  1749 |DOI: 10.1038/s41467-017-01981-8 |www.nature.com/naturecommunications 13

http://bioinformatics.mdanderson.org/main/Ribo-TISH
http://bioinformatics.mdanderson.org/main/Ribo-TISH
http://github.com/zhpn1024/ribotish
www.nature.com/naturecommunications
www.nature.com/naturecommunications


50. Rubio, C. A. et al. Transcriptome-wide characterization of the eIF4A signature
highlights plasticity in translation regulation. Genome Biol. 15, 476 (2014).

51. Rashid, N. U., Giresi, P. G., Ibrahim, J. G., Sun, W. & Lieb, J. D. ZINBA
integrates local covariates with DNA-seq data to identify broad and narrow
regions of enrichment, even within amplified genomic regions. Genome Biol.
12, R67 (2011).

52. Uren, P. J. et al. Site identification in high-throughput RNA-protein interaction
data. Bioinformatics 28, 3013–3020 (2012).

53. Akaike, H. A new look at the statistical model identification. IEEE Trans.
Autom. Control. 19, 716–723 (1974).

54. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
55. Michel, A. M., Andreev, D. E. & Baranov, P. V. Computational approach for

calculating the probability of eukaryotic translation initiation from ribo-seq
data that takes into account leaky scanning. BMC Bioinformatics 15, 380
(2014).

56. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

57. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

58. Johnson, M. A. et al. Amino acid starvation has opposite effects on
mitochondrial and cytosolic protein synthesis. PLoS ONE 9, e93597 (2014).

59. Wethmar, K., Barbosa-Silva, A., Andrade-Navarro, M. A. & Leutz, A.
uORFdb–a comprehensive literature database on eukaryotic uORF biology.
Nucleic Acids Res. 42, D60–D67 (2014).

60. Schueler, M. et al. Differential protein occupancy profiling of the mRNA
transcriptome. Genome Biol. 15, R15 (2014).

61. Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns
in tetrapods. Nature 505, 635–640 (2014).

62. Washietl, S., Kellis, M. & Garber, M. Evolutionary dynamics and tissue
specificity of human long noncoding RNAs in six mammals. Genome Res. 24,
616–628 (2014).

63. Hezroni, H. et al. Principles of long noncoding RNA evolution derived from
direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110–1122
(2015).

64. Pauli, A., Valen, E. & Schier, A. F. Identifying (non-)coding RNAs and small
peptides: challenges and opportunities. BioEssays 37, 103–112 (2015).

65. Tani, H., Torimura, M. & Akimitsu, N. The RNA degradation pathway
regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS
ONE 8, e55684 (2013).

66. Bicknell, A. A., Cenik, C., Chua, H. N., Roth, F. P. & Moore, M. J. Introns in
UTRs: why we should stop ignoring them. BioEssays 34, 1025–1034 (2012).

67. Cenik, C. et al. Genome analysis reveals interplay between 5′UTR introns and
nuclear mRNA export for secretory and mitochondrial genes. PLoS Genet. 7,
e1001366 (2011).

68. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26, 139–140 (2010).

69. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

70. Wang, X., Hou, J., Quedenau, C. & Chen, W. Pervasive isoform-specific
translational regulation via alternative transcription start sites in mammals.
Mol. Syst. Biol. 12, 875 (2016).

71. Floor, S. N. & Doudna, J. A. Tunable protein synthesis by transcript isoforms in
human cells. eLife 5, e10921 (2016).

72. Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes
in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat.
Biotechnol. 28, 503–510 (2010).

73. Jiang, H. & Wong, W. H. Statistical inferences for isoform expression in RNA-
Seq. Bioinformatics 25, 1026–1032 (2009).

74. Li, W. & Jiang, T. Transcriptome assembly and isoform expression level
estimation from biased RNA-Seq reads. Bioinformatics 28, 2914–2921 (2012).

75. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28, 511–515 (2010).

76. Nicolae, M., Mangul, S., Mandoiu, I. I. & Zelikovsky, A. Estimation of
alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol.
Biol. 6, 9 (2011).

77. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from
RNA-Seq data with or without a reference genome. BMC Bioinformatics 12,
323 (2011).

78. Cenik, C., Derti, A., Mellor, J. C., Berriz, G. F. & Roth, F. P. Genome-wide
functional analysis of human 5′ untranslated region introns. Genome Biol. 11,
R29 (2010).

79. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29,
15–21 (2013).

80. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical
and powerful approach to multiple testing. J. Roy. Stat. Soc. B Met. 57, 289–300
(1995).

Acknowledgements
We thank Dr. Roxana S. Redis and Dr. George A. Calin for sharing the HEK293 cells.
This work was partially funded by NIH K99/R00 Pathway to Independence Award (NIH
R00 CA172700) and Sidney Kimmel Scholar Award to J.H., NIH K99 CA207865 to Z.J.,
Cancer Prevention Research Institute of Texas (CPRIT) grant RP130397 and NIH
1S10OD012304-01 to D.H.H., NIH R00CA175290 and CPRIT first-time tenure-track
faculty recruitment grant RR140071 to Y.C., CPRIT Training Grant RP160283 to T.M.N.,
NIH CA16303-41 to J.M.R., and Welch Foundation I-1800 and NIH GM114160 to Y.Y.
This work was also supported in part by U.S. National Cancer Institute (NCI; MD
Anderson TCGA Genome Data Analysis Center) grant CA143883, CPRIT grant
RP130397, the Mary K. Chapman Foundation, the Michael & Susan Dell Foundation
(honoring Lorraine Dell), and MD Anderson Cancer Center Support Grant P30
CA016672 (the Bioinformatics Shared Resource).

Author contributions
Y.C. conceived the study. P.Z. and Y.C. designed the algorithm. P.Z wrote the code and
performed the data analysis. Y.X. and D.H. performed molecular cloning. D.H. per-
formed cell culture, transient transfection, and western blot experiments. D.H. generated
ribo-seq libraries. C.M.D. and E.A.E. performed high-throughput sequencing of the
libraries. D.H. performed immunoprecipitation experiments with the help from J.K.H.
B.-F.P. and D.H.H. performed mass spectrometry experiments. F.Z. and Y.Y. provided
critical expertise for mass spectrometry experiments. Y.W., T.L., L.T., F.Z., J.H., Y.Y.,
X.C., T.M.N., J.M.R., and Z.J. contributed to the data analysis and/or provide critical
comments. P.Z., D.H., and Y.C. wrote the manuscript with the help from other
co-authors. Y.C. supervised the study.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-01981-8.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open AccessThis article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commonslicense, unless indicated
otherwise in a credit line to the material. If material is not included in the article’-
sCreative Commons license and your intended use is not permitted by statutory reg-
ulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01981-8

14 NATURE COMMUNICATIONS |8:  1749 |DOI: 10.1038/s41467-017-01981-8 |www.nature.com/naturecommunications

http://dx.doi.org/10.1038/s41467-017-01981-8
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Genome-wide identification and differential analysis of translational initiation
	Results
	An overview of Ribo-TISH
	Quality control of TI-seq and rRibo-seq data
	Modeling the background distribution of TI-seq data
	Genome-wide identification and differential analysis of TIs
	Ribo-TISH outperformed existing methods in predicting ORFs
	Experimental validation of new smORFs predicted by Ribo-TISH

	Discussion
	Methods
	Ribosome profiling and library preparation
	Cloning
	Cell culture and transient transfection
	Western blot
	Immunoprecipitation and mass spectrometry sample preparation
	RPF reads alignment
	Compatibility of RPF reads with transcript structure
	Quality control of ribo-seq data
	Data sources
	Model selection for TI-seq background distribution
	TIS and ORF prediction
	Differential analysis of TISs
	Positive and negative sets for performance evaluation
	Performance of different methods in predicting ORFs
	Functional enrichment analysis
	ORF prediction by integrating TI-seq and rRibo-seq data
	Software and code availability
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




